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Our present concern has been with the identification of the origin and classification 

of the different qualitative forms which the numerically obtained transient solution 

assumes, when a two-dimensional direct numerical simulation (DNS) of the incom- 

pressible continuity and Navier-Stokes equations is performed in order to recover a 

steady-stade solution of the system of equations governing fluid flow motion. Within 

the unifying framework of the extension of Tollmien's linear instability theory [25] to 

nonparallel two-dimensional steady basic states, residuals encountered in the simu- 

lation as the latter approaches convergence are either identified as or associated with 

the least damped of the two-dimensional global linear eigenmodes of the steady- 

state flow. The inability to converge to a steady-state is shown to be linked with the 

global linear flow eigenmodes approaching a neutrally stable state and interacting 

nonlinearly. With the origin of the residuals established, an algorithm is presented 

which permits recovery of the converged steady-state solution from transient data at 

substantially less computing effort compared with that necessary for the integration 

of the system of equations until convergence. Nonparallel linear instability theory 

of the three-dimensional eigenmodes of the converged two-dimensional steady-state 

may also be used to quantify the differences between the results of two- and three- 

dimensional DNS. The classic two-dimensional lid-driven cavity flow is used as a 

demonstrator of these ideas. 
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1.   INTRODUCTION 

A steady-state solution q of the two-dimensional incompressible continuity and Navier- 

Stokes equations which describe flow in a prescribed two-dimensional domain ti bounded 

by dfl is seeked numerically. A plethora of numerical approaches for the accurate and 

efficient integration of either the steady or the unsteady equations of motion exists (e.g. [9, 

26,30]) so that this problem may be considered solved in principle. However, in performing 

a time-accurate integration of the equations of motion one observes that, depending on the 

values of parameters such as the flow Reynolds number, in the limit of large time either 

a steady-state solution is obtained (e.g. [1]) or unsteady, sometimes periodic, motion sets 

in (e.g. [13, 11]). The first question arising is what type of physical information is not 

considered by solving the steady as opposed to the unsteady equations of motion and what is 

the physical interpretation of the critical conditions beyond which the steady and unsteady 

formulations deliver different results. Both physical and numerical experience suggest that 

at low Reynolds numbers the two formulations may be used interchangeably. For example, 

essentially identical results with those of Ghia et al. [27] and Schreiber and Keller [19] 

have been obtained by a multitude of subsequent investigators who used the time-dependent 

equations of motion to describe flow in the square lid-driven cavity at Reynolds numbers 

up to Re = 104. On the other hand, the question of existence of a steady-state solution 

delivered by the unsteady version of the equations of motion at Re — 104 has been recently 

re-opened [31], while it is well known that Hopf bifurcations exist in both the aspect-ratio 

two singular lid-driven cavity at Re < 5000 [11] and its regularised square counterpart at 

Re « 104 [10]. Concensus exists that at high Reynolds numbers the unsteady formulation 

is capable of delivering physics inaccessible to the steady version of the equations of 

motion; however, the origin of the differences between the results of the two formulations 

is presently not understood in a satisfactory manner. This is an alternative way of posing 



the first question, namely what are the unsteady effects that manifest themselves at high 

Reynolds numbers. 

The next question arises from the very concept of two-dimensionality. The results of 

numerical solutions of the three-dimensional analoga of the incompressible continuity and 

Navier-Stokes equations are in most cases in substantial qualitative and quantitative dis- 

agreement with their two-dimensional counterparts (e.g. [2,7]), relegating two-dimensional 

DNS to the realm of academic interest. Within the scope of two-dimensional solutions be- 

ing of interest, three-dimensionality of physical space could be addressed by considering 

the flow to be independent of the third spatial direction. Homogeneity in this third direction 

could, in turn, be discussed in the context of a three-dimensional simulation, nonperiodic 

in the same two spatial directions as the two-dimensional one and periodic in the third. 

Advances in both algorithms and hardware and, not least, a considerable amount of knowl- 

edge on the differences between two- and three-dimensional numerical simulation results 

lead one to employ a DNS algorithm for flow with two nonperiodic and one periodic spatial 

direction (e.g. [22, 15, 28]) in the founded expectation that a three-dimensional so-called 

spatial DNS is the only means capable of capturing all physical phenomena at a certain 

Reynolds number. The second question which may be posed at this point regards the origin 

of the differences between the results of such two- and three-dimensional direct numerical 

simulations. Associated, one may ask whether there exists an alternative means to spatial 

DNS for the description of the origins of the three-dimensional phenomena encountered. 

The objective of the present paper is to put both questions within the unified framework 

of nonparallel linear instability of the steady state q. With the aid of a well-studied flow 

example we demonstrate the intimate link between numerical residuals in steady-state fluid 

flow calculations and linear two-dimensional eigenmodes of the converged steady state 

q.   In §2 we present theoretical arguments, first analysing the behaviour of numerical 



residuals near convergence towards the steady-state solution from a numerical point of 

view.   Subsequently we discuss solutions of the partial derivative eigenvalue problem 

governing linear instability of nonparallel two-dimensional steady-state flows, which shed 

light on residuals from a physical viewpoint. With the origin of residuals established from 

a physical point of view we construct and present an algorithm which permits recovery of 

the converged steady-state solution from transient results of the time-marching procedure, 

the latter taken well before convergence. In §3 we present results obtained for the classic 

square lid-driven cavity flow as a demonstrator of the ideas discussed herein. The link 

between the results of nonparallel linear instability theory and different types of behaviour 

of numerical residuals in the DNS is demonstrated in this section and the aforementioned 

questions are answered. Examples of recovery of the converged steady-state from transient 

data and assessment of the substantial savings in the computing effort materialised by use 

of the proposed algorithm are presented in this section. Closing remarks on the far-reaching 

implications of the present findings are made in §4 and suggestions for the extension of the 

present analysis to compressible flow and flow with three nonperiodic spatial directions are 

made in §5. 

2.   THEORY 

2.1.   On residuals and the phenomenology of their behaviour 

While in an computation based on the steady system of equations governing fluid flow 

motion residuals are viewed as departure from the steady state which have to be eliminated 

in an efficient manner by a specific solution algorithm (e.g. multigrid), in a time-accurate 

integration one may view transients as solutions of the equations of motion and attempt 

to attach physical significance to characteristic patterns of their behaviour. Here we con- 

centrate on a time-accurate integration of the unsteady equations of motion and monitor 

the behaviour of residuals, defined as the difference between the transient solution and the 



converged steady state, in flow regimes where the latter exists. Physical space is three- 

dimensional; without loss of generality we may take the Cartesian coordinates a; and y to 

be defined on fi while z denotes the third spatial coordinate in the direction of SI. Along 

the first two coordinates the velocity vector has components u and v, while pressure is 

denoted by p. The equations of motion are marched in time t until q = (w,u,p)T, the 

transient solution, converges to q. Assuming that the latter exists and keeping the domain 

fi unchanged, the following qualitative observations are made. 

First, at any Reynolds number Re at which q exists, close to convergence the residuals 

decay exponentially in amplitude. Second, refinement of the discretisation of the domain 

fi at constant Re results in convergence of the rate at which the residuals decay. Third, the 

(converged) rate of decay of residuals is a function of the flow Reynolds number; as Re 

increases residuals decay slower and the associated time of integration of the equations of 

motion until convergence increases. Fourth, on occasion, the residuals decay at a specific 

constant rate for a number of decades before this rate of decay changes to a different 

constant value at which residuals further decay until convergence. Fifth, systematically 

increasing Re, instead of monotonic convergence of residuals an oscillatory behaviour of q 

in the neighbourhood of q is observed. Ultimately, a value of Reynolds number is reached 

past which no q exists. At first sight the existence of a physical mechanism which unifies 

such diverse patterns of behaviour of the numerical solution seems unlikely. 

2.2.   A numerical point of view on the behaviour of residuals near convergence 

However, it is straightforward to provide an explanation of the first observation on the 

behaviourof residuals, which also provides a handle to the link between numerical residuals 

and physical flow instabilities. We assume that the solution q is close to converging to 

the seeked two-dimensional field q = (ü,tJ,p)T such that it may be decomposed into the 

latter and small two-dimensional residuals q2D = (Ü2D,«2D,P2D)
T
 superimposed upon it, 



according to 

q(x,y,t) = q.{x,y) + e q.2D{x,y,t), (1) 

with e < 1. We next substitute the decomposition (1) into the continuity and Navier- 

Stokes equations and assume that the steady-state solution satisfies the equations of motion 

at 0(1), such that it may be subtracted out of the resulting system at this order. Subsequently, 

based on the smallness of the amplitude of the residuals, we linearise about q and rearrange 

the system at 0(e) such that the vector of residuals represents the unknowns; terms of 

0(e2) are neglected. Since the coefficients of the resulting linear system of equations for 

the determination of q2D at 0(e) are independent of time t we may introduce an eigenmode 

decomposition in this coordinate, according to 

Ö2n(x,y,t) = q2D(x,y) eat (2) 

with q2D = («2D,#2D,P2D)
T

- The physical significance of the parameter a will be 

discussed shortly; from a numerical point of view it represents the rate at which the 

residuals q2D decay in the neighbourhood of q. For simplicity we present only the real part 

of the admissible solutions of (2) although it is clear that both q2D and a may, in general, 

be complex while q2D is always real. Convergence of the solution q towards q may be 

monitored by reference to either the local behaviour of the solution q at a position (XQ , yo) 

on 0 or by monitoring a suitably defined global criterion such as the energy contained 

in the residuals <J2D; alternatives have been discussed in [24]. Here we follow the first 

approach and recover the parameter a by monitoring the solution at two time-levels, t — At 

and t, where At may but need not be the time-step in the numerical solution algorithm. 

Combining (1) and (2) it follows that the time-behaviour of the solution may be monitored 

by 

<7 = ln[qVqt_A*]/At«dln[qt]/dt, (3) 



where 

q' = |q(a:o,yo,<)-q(3o,yo)|. (4) 

The approximation in (3) holds as equality in the case of linear dependence of ln[q*] on 

time t. Decay of residuals is indicated by a < 0. The first statement of the present paper 

is thus in place without reference to a particular flow, through the analytical result that an 

exponential decay of residuals near convergence should be observed as a consequence of 

the separability of the linearised system of equations for the determination of residuals in 

time. 

2.3.   A physical point of view based on nonparallel linear instability theory 

Explanation of the further observations made in § 2.1 requires calling upon an extension 

of the classic linear instability theory proposed by Tollmien [25], which describes the 

behaviour of small-amplitude disturbances superimposed upon an one-dimensional steady- 

state basic profile, into a new theory which is concerned with small-amplitude perturbations 

superimposed upon a steady two-dimensional field.   In so doing, the many and often 

questionable assumptions related with the so-called parallel-flow approximation are relaxed 

and the linear instability of nonparallel basic states may be analysed. The penalty to be 

paid in resolving two spatial dimensions is the need for numerical solution of a partial- 

derivative-based eigenvalue problem instead of the straightforward ordinary-differential- 

equation-based system of the Orr-Sommerfeld and Squire equations [6]. One of the early 

successes of the nonparallel two-dimensional linear instability analysis was the discovery 

of inviscid short-wave instability of two-dimensional eddies by Pierrehumbert [18] while 

the first viscous linear analysis in two non-periodic spatial dimensions known to us is the 

work of Lee et al.   [16] on the instability of flow in a rectangular enclosure under the 

influence of gravity and temperature gradient. More recent viscous analyses, in step with 



modern developments in algorithms and hardware, have been presented in [23] where we 

discuss the linear instability of two nonparallel flows, that in a rectangular duct and that 

in the infinite-swept attachment-line boundary layer. The nonparallel linear instability of 

laminar flows encompassing a recirculation bubble has been discussed by Barkley et al. 

[4] for flow behind a backward-facing step and by Theofilis et al. [29] for two separated 

boundary layer flows developing under the influence of adverse pressure gradients. 

We re-interpret the transient solution q in three-dimensional physical space as one com- 

posed of small-amplitude three-dimensional perturbations q = (ü, v,w,p)T superimposed 

upon q = (ü, v, ü),ß)T, the latter again taken to be two-dimensional. Linearisation about 

q is permissible on account of the smallness of perturbations compared with the steady- 

state q and the resulting system for the determination of q is separable in both t and z on 

account of the steadiness and the two-dimensionality of the basic flow q. Eigenmodes are 

introduced in these directions such that 

q(x, y, z, t) = q(x, y) e1 &'-*! + c.c. (5) 

with q = (w, v, w, p)T and w being the disturbance velocity component in the z-direction. 

Complex conjugation is introduced in (5) since q is real while all three of q, ß and w may 

be complex. In the framework of a temporal linear nonparallel instability analysis used 

presently we write the linearised system in the form of an eigenvalue problem for the 

complex quantity w, while ß is taken to be a real wavenumber parameter describing an 

eigenmode in the z-direction. The real part of w is related with the frequency of the 

instability mode while its imaginary part is the growth/damping rate; a positive value of 

uj\ = 3{w} indicates exponential growth of the instability mode q in time t while Wi < 0 

denotes decay of q in time. In the present framework the three-dimensional space comprises 

Q extended periodically in z and characterised by a wavelength Lz in this direction which 

is associated with the wavenumber of each eigenmode, ß, through Lz = 2n/ß. 



The system for the determination of a; and q takes the form of a complex nonsymmetric 

generalised eigenvalue problem 

[C-(Vxü)]Ü-{Vyü)v-Vxp =  -iuü, (6a) 

-{Vxv)ü + [C-(Vyv)]v-Vyp =  -iuv, (6b) 

-(Vxw)u - (T>yw)v + Cw-ißp =  -iww, (6c) 

Vxü + Vyv + ißw  =  0, (6d) 

subject to appropriate boundary conditions on oft. The linear operator C = (1/Re) 

(VI +V2
y- ß2) - üVx - vVy - i ßw with Vx = 8/dx, V\ = d2/dx2, Vy = d/dy 

and V\ — d2/dy2. Some details of an efficient numerical algorithm for the solution of the 

matrix eigenvalue problem resulting from numerical discretisation of the spatial directions 

x and y have been presented in [23]. 

Comparison of (1-2) and (5) reveals that the two formalisms are related in the limit 

ß -» 0. However, w is not taken a priori to vanish within the framework of nonparallel 

linear instability; three-dimensionality of physical space is preserved and the existence of a 

two-dimensional steady-state solution q is the result of q -> 0 as t -> oo. The comparison 

of (1-2) and (5) highlights two further key ideas of the present paper. On the one hand, 

the residuals discussed earlier acquire the physical interpretation of one of the linear 

eigenmodes which pertain to the steady-state q and have ß = 0; on the other hand, the rate 

of decay of the residuals a is nothing but the damping rate wi of this linear perturbation, 

as delivered by numerical solution of the partial-derivative eigenvalue problem (6a-6d). 

Another question naturally arising concerns the physical behaviour of the system when the 

least stable member of the linear eigenspectrum which pertains to q and has ß = 0 becomes 

unstable. The answer is clearly that the existence of an unstable (ß = 0)-eigenmode is 



mutually exclusive with the ability to obtain a converged q. From the point of view of the 

global linear instability theory based on the partial derivative eigenvalue problem (6a-6d) 

the unsteady behaviour of two-dimensional flow may be related to (ß = 0)— eigenmodes 

approaching conditions of neutral stability and interacting nonlinearly. 

The answer to the second question posed in the Introduction may now also be obtained 

without reference to a specific flow example. The existence of a steady-state q in a 2D 

numerical simulation is synonymous with the fact that all (/3 = 0)-eigenmodes of the flow 

have w; < 0. Modes having ß / 0, on the other hand, may be either growing or decaying 

linearly. In case w; < 0 V ß, a three-dimensional numerical simulation performed at some 

parameters in a three-dimensional domain defined by fi and an arbitrary periodic extent 

Lz in the z-direction will deliver identical results for a converged q compared with that 

of a two-dimensional simulation performed at the same parameters in the domain n. The 

situation changes in case a bracket of wavenumbers ß e [/3i, ^2] exists which corresponds 

to unstable modes. The largest wavenumber ß2 defines a length Lz2 = 2-K/ß2\ if the 

three-dimensional simulation is performed with Lz < Lz2 again no difference is to be 

expected between its result for q and that of a two-dimensional simulation. Both will 

converge to the same steady-state solution q since all wavenumbers of modes defined by 

an Lz constrained as above correspond to w; < 0. However, if Lz > Lz2 at least one 

mode in the three-dimensional simulation will be unstable, which will result in the two- 

and three-dimensional simulations producing different solutions. 

We return to the observation of oscillatory behaviour of the residuals near convergence 

and differentiate between exponentially decaying residuals of either sinusoidal or apparently 

nonlinear nature. A linear decay of ln[q*] is a consequence of (ß = 0)-linear eigenmodes 

being stationary, i.e. having ut = R{w} = 0. However, other stable two-dimensional 

member of the eigenspectrum of q need not correspond to stationary modes; damped 



travelling modes having wr ^ 0 will manifest themselves in the time-accurate simulation 

as residuals of sinusoidal character the magnitude of which decays exponentially. On the 

other hand, the unambiguously linear dependence of ln[q*] on t in the neighbourhood 

of q is the consequence of the existence of a spectrum comprising modes which are 

clearly separated in parameter space from one another. The co-existence of several two- 

dimensional eigenmodes of approximately the same damping rate can lead to their nonlinear 

interaction and difficulty to observe a behaviour governed by nonparallel linear instability 

theory. Comparison of power spectral analysis of the time-dependent DNS signal and 

the results of the partial-derivative eigenvalue problem (6a-6d) may shed light upon the 

two-dimensional eigenmodes involved in such a nonlinear interaction. 

2.4.   On the time of integration until convergence 

Straightforward rearrangement of (1 -2) delivers an estimate of the time necessary (under 

linear conditions) for the least stable global mode present in the numerical solution to be 

reduced from an amplitude Ai to A2, which may be calculated from 

TAl/A2=HAi/4>)/(-»i), C7) 

where uii is the damping rate of the mode in question. The worst case scenario in a time- 

accurate integration is that the solution will be attracted by the least-stable global eigenmode 

developing upon q and having ß = 0 throughout the course of the simulation. An upper 

bound for the time necessary for the steady-state to be obtained may then be offered by 

(7) in which Wi is the damping rate of this mode. Defining, for example, convergence 

as the reduction of an 0(1) residual by 10 orders of magnitude results in an integration 

time of Tio-io « 23/|o;i|. This is a conservative estimate since it is occasionally observed 

that other stronger damped eigenmodes will come into play early in the simulation and the 

least-damped eigenmode will only determine the late stages of the convergence process. 



An associated point concerns the misconception which often exists that initialising the 

numerical solution for q at some Reynolds number from a state which is 'close' to the 

one desired, for instance using the converged solution at a somewhat different Reynolds 

number, may reduce the integration time. In the context of the present analysis this is shown 

to be a misplaced expectation. If there exists an 0(1) deviation between the target solution 

and its initial estimate, the deviation has to be reduced in magnitude during an integration 

of the equations of motion for the length of time determined by the least damped two- 

dimensional (ß = 0)-eigenmode at the specific Reynolds number. It is this eigenmode of 

the flow and not the initial state which determines the length of the integration time for q. 

The ideas discussed in §2.3, on the other hand, lead to an algorithm application of which 

may save substantial amounts of the integration time necessary for reduction of residuals 

to machine-roundoff level. 

2.5.   Recovery of the converged solution q from transient data 

Having identified small-amplitude residuals in the calculation as the least damped global 

two-dimensional eigenmodes of the flow, it is now possible to utilise this information in 

order to recover the converged steady-state solution from transient data, without having to 

pursue the time integration of the equations of motion until convergence in time is obtained. 

Combining (1), (2) and (5) one obtains 

q(x,y,f) = q(z,2/) + e Iqr cosuTt - q; sinwM e"*, (8) 

where q, = SR{q}, qi = S{q} and q is one of the (ß = 0)-linear eigenmodes in (5). 

It should be stressed here that the following discussion is applicable to transient data for 

which (8) holds, namely, solutions for which the entire time-dependence of the solution 

is exhibited in the residuals; in other words, the present analysis is based on the self- 

consistent premises that 9q/9t = 0. Further, it is noted that q may but need not be the 



least-damped member of the eigenspectrum of q; the only prerequisite for the validity of 

the following discussion is that the transient solution has reached a regime of exponential 

decay of residuals. A final point is that the signal near convergence need not be composed 

of a single damped eigenmode as (8) implies. However, the elements of the theory for the 

recovery of q from a signal being composed of several stationary (wr = 0) and travelling 

(wr / 0) linearly damped eigenmodes may be exposed by reference to (8) on which we 

focus our attention. 

The calculation of q from transient data for q follows in two stages. First, elementary 

signal analysis techniques deliver the results for u>r and a. Second, once wr and a have 

converged in time (8) may be used to calculate q. The circular frequency ut is calculated 

from the the period of oscillations in the time-signal of q which, in turn, is identified by 

the maxima in the signal. Independently, in order to calculate a we re-write (8) as 

This expression may be evaluated at those times that dq/dt = 0 in the course of the 

time-integration, i.e. at the same times that u>r is calculated. At these times the magnitude 

of a is given by 

1 {d\/dt2 

2 (ö2q/öi2) 
(10) 

(dq/dt)=0 

In case UJT = 0, a monotonic dependence of dq/dt on t is usually observed from the 

beginning of the calculation until convergence, with dq/dt = 0 only at convergence. In 

this case, the magnitude of a may be calculated using 

(flW) (U) °-Ttom- (11) 

With a and wr converged in time (8) may be written as a linear system of three equations 

at three times t\ = t, t2 = t + At and t3 = t + 2 At for three unknowns, q, q,- and qi with 



the transient solution qn = q.{x,y, tn) known at these times. Simple algebra delivers the 

desired converged steady-state solution q as 

- = gi e2<yAt - 2 g2 eyAt costtfrAt + g3 „» 
1-       e2<rA*-2e°-AtcoswrAt + l 

As an aside, the spatial structure (q,, 4i) of the linear eigenmode q may also be recovered 

to within an arbitrary constant from the same linear system. Equivalently, if only the 

converged steady-state solution is of interest, the expression 

«^{M^*-*^**} (,3) 

may be used for the recovery of q from transient data for q and its first two time- 

derivatives. Either of (12) or (13) may be used for the cases of residuals corresponding to 

stationary (wr = 0) or travelling (wr ^ 0) single linear eigenmodes. 

This idea may be extended to extract q from a DNS signal comprising several linearly 

decaying eigenmodes superimposed upon the steady-state solution, 

q = q + 5^£n(9n,r coswn>rt - qn<i sinu;n)Tt)e0'"<. (14) 
n 

As an example, in the case of one stationary 

eiqi.-e*1* (15) 

and one travelling 

£2(q2,r cos wTt - q2,j sin wrt)e
<ra* (16) 

linear disturbances being present in the signal, one may first extract information for the 

damping rate of the stationary mode from the signal itself and for the damping rate and 

frequency of the travelling disturbance from the first time-derivative of the DNS signal for 

q. Subsequently, one may solve the (2NxNy) x (2NxNy) system defined by writing 



(of + wr
2)q + (o-J + <r2 + u;r

2 - 2ai<r2)eiqi,re
<ri*  = 

ö?-^+w+^)1 07) 

at two consecutive times ti and h for q and £iqi,r, where Nx and iVy are the number 

of points discretising the a;— and y—spatial directions, respectively. 

The accuracy by which wr and a are determined depends on that by which the first 

three time-derivatives of q are calculated; this, in turn, depends on the time-step in the 

calculation and the number of fields stored in order for backward differentiation formulae 

to be applied. Since the time-step is controlled by CFL considerations, it is advisable to 

store a reasonably high number of fields in order for high accuracy of u>r and a and, in turn, 

of q to be obtained. The calculations to be presented in what follows have been performed 

using five-point backward differencing formulae on an equidistant grid [14]. 

At conditions at which a steady-state solution exists most two-dimensional global eigen- 

modes of the converged steady-state are heavily damped (an = 0(1) in equation (14)). 

Consequently, if the time-integration of the equations of motion is pursued long enough, 

only a handful of (ß = 0)-global eigenmodes will survive and persist in the DNS signal. 

Clearly, it is the least damped of the global instabilities that will determine the ultimate 

behaviour of the solution. In determining whether one integrates the equations of motion 

until all but the least-damped of the eigenmodes have subsided in order to apply (12) or (13) 

or one recovers q at an earlier time from a signal in which a number of damped eigenmodes 

still persist one should take into account the following factors. 

First, the efficiency of the specific DNS algorithm determines whether the cost of inte- 

grating the equations of motion until convergence is acceptable at given flow parameters. 

The cost of computing uit,a, intermediate values of q and monitoring convergence of 



all these quantities, possibly for several eigenmodes, must also be weighed against the 

straightforward approach of pursuing the time-integration in the DNS until convergence. 

However, at all Reynolds numbers studied in the prototype flow monitored both a and wr of 

individual modes have converged within the first quarter to half of the total integration time, 

making further time-integration superfluous. While the integration time until convergence 

is short at low Reynolds numbers, on account of large damping rates of the least-damped 

linear eigenmodes, at increasingly large Reynolds numbers the magnitude of the damping 

rates becomes increasingly smaller and application of the ideas exposed in this section 

becomes increasingly attractive in order for substantial savings in computing effort to be 

materialised. 

3.   RESULTS FOR THE SQUARE LID-DRIVEN CAVITY 

An example flow in which these ideas may be illustrated is the classic lid-driven cavity 

[2]. In its function as a testbed for numerous algorithms this flow has generated a substantial 

amount of information which is relevant to the preceding discussion. Calculations for q 

were performed using a two-dimensional spectrally-accurate algorithm for direct numerical 

simulation of flow in nonperiodic geometries. The code is based on a real-space eigenvalue- 

decomposition of the spectral collocation differentiation matrices extending ideas discussed 

by Ku et al. [8] and uses one member of the low-storage second-order accurate time- 

integration schemes put forward by Spalart et al. [17]. A spectral algorithm was chosen 

in order for optimal accuracy to be obtained on a low number of collocation points, the 

latter being dictated by the maximum number of points on which numerical solution 

of the partial-derivative eigenvalue problem is feasible using current computer technology. 

Solutions were obtained using Jacobi polynomials for the spatial discretisation at resolutions 

depending on the Reynolds number and ranging from 322 to 1282 spectral collocation 

points.   The time-steps at the different Reynolds numbers were kept well below those 



dictated by the CFL condition in order for reasonable accuracy of the results of a to be 

ensured. In view of our arguments being based on nonparallel linear instability analysis 

and the well-known sensitivity of linear instability analysis results on the accuracy of the 

basic flow, we first present a validation of both the basic flow and the partial derivative 

eigenvalue problem. 

3.1.   Validation studies 

The accuracy of the converged steady-state solutions is first assessed by comparison with 

the established works of Ghia et al. [27] and Schreiber and Keller [19]. Converged basic 

states have been calculated at several Reynolds numbers of which we present calculations 

at Re = 400,1000,3200 and 4000, the first three obtained on 322 and the last on 482 

Legendre collocation points. At Re = 400 and 1000 both aforementioned works present 

results while at the higher Reynolds numbers we compare our calculations individually with 

either work. Interestingly, aside from the locations and maximum values of streamfunction 

and vorticity in the primary vortex core, Schreiber and Keller [19] analysed and presented 

their results in the form of a converging series calculated by Richardson extrapolation. 

Comparisons are presented in a twofold manner. The comparison of our calculations for 

the location and maxima in the stream-function ■$ and the vorticity ( with those of the 

reference works is shown in Table la; note that [19] define ( to have an opposite sign to 

that of [27] and the present work. Although the overall agreement of all results is quite 

reasonable marginal differences exist. These may be attributed to the different grids used in 

all three works, making an interpolation procedure necessary for detailed comparisons. To 

this end, we employed a piecewise cubic procedure to transfer our results onto the (different) 

maxima of the benchmark calculations. Our interpolated values as well as the results of 

[27] and [19] are presented in Table lb, where the individual comparisons demonstrate a 

substantially more satisfactory agreement of our calculations with both benchmark works 



at low Re-values and especially with the Richardson extrapolated results of [19] at the 

highest Reynolds number monitored. 

It is well-known from comparisons of three-dimensional DNS results and one-dimensional 

Orr-Sommerfeld-based linear instability analysis that details of the steady basic state 

strongly influence the accuracy of the growth/damping rates of linear eigenmodes [12]. 

The remaining differences between our results for the two-dimensional steady-states in 

the lid-driven cavity and those of the benchmark works are next assessed in this light, 

from the point of view of their influence on the global linear instability analysis results. 

Two solutions of the partial derivative eigenvalue problem (6a-6d) for the lid-driven cavity 

exist, those of Ramanan and Homsy [21] (RH) and Ding and Kawahara [5] (DK). These 

authors have presented linear instability analyses of the square lid-driven cavity flow which 

deliver consistent results at low Re but predict different critical Reynolds number values 

for linear amplification of three-dimensional perturbations. While individual comparisons 

are certainly possible, at high Reynolds numbers neither work presents results for the two- 

dimensional global linear instabilities which are central to the theme of the present paper. 

We therefore refrain here from discussion of three-dimensional linear instability and the 

issue of a linear critical Reynolds number and monitor a low value of the Reynolds number, 

Re = 200, at which both RH and DK present results at ß = 0. 

Table 2 shows the tabulated values of RH, the graphically reproduced results of DK and 

our solutions of the partial-derivative eigenvalue problem (6a-6d). The overall agreement 

of the previous and the present instability analyses is quite good and all results indicate the 

experimentally established fact of stability of the two-dimensional flow in the lid-driven 

cavity at this Reynolds number [2]. Regarding the quality of the basic flow, it may be 

inferred from the results of Table 2 that the basic states of both RH and DK and the present 



work are practically identical for the purposes of the linear instability analysis that follows, 

at least at the Reynolds numbers discussed. 

3.2.   Numerical residuals and (ß = 0) linear eigenmodes in the square lid-driven 
cavity 

Figs. l-4c show the convergence histories of the two-dimensional DNS at several 

Reynolds numbers, with the qualitative behaviour of residuals discussed earlier observed. 

The convergence of the rate of decay of residuals a, calculated using (3-4), is shown in 

Table 3 at Re - 100,200 and 300. Also shown is the damping rate a;; of the least- 

damped eigenmode having ß = 0 as obtained by linear analysis, based on the partial- 

derivative eigenvalue problem (6a-6d), of the converged steady-state q corresponding to 

each Reynolds number. The excellent agreement between the two quantities leaves lit- 

tle room for doubt that numerical residuals may be identified as being the least-damped 

(ß = 0)-eigenmode of the corresponding converged steady-state. It is interesting to note 

here that such an agreement could not be obtained when we followed the commonly-used 

procedure to terminate the steady-state calculation after a decay of residuals by an arbitrar- 

ily defined seemingly adequate small number of orders of magnitude, say 5-6. Such poorly 

converged in time basic states may be viewed as comprising a small unsteady component 

the linear instability analysis of which is bound to deliver erroneous results. Further, it is 

worth mentioning that the prediction (7) of the time necessary to integrate the equations of 

motion until convergence in time is in line with the results of Table 3 and Fig. 1. 

A clearly defined single value of a which determines the behaviour of residuals in the 

entire course of the time-integration is a result of a two-dimensional eigenspectrum of q 

in which the least damped two-dimensional (ß = 0) -eigenmodes are stationary and well 

separated in parameter space from their more stable counterparts. The situation becomes 

more intricate, but still amenable to analysis, as the Reynolds number increases. Qualitative 

differences may be found between the results of Figs. 1, 2 and 3, although all simulations 



were started from the same initial condition tp = £ = 0; we discuss the differences 

between the results of Figs. 1 and 3 first. While in both sets of results a short initial 

transient is followed by exponential decay of residuals, in the first set this decay pursues at 

the same rate for almost two decades while in the second two different rates of exponential 

decay of residuals are demonstrated. Inspection of the full spectra delivered by numerical 

solution of (6a-6d) at each Reynolds number reveals that as the Reynolds number increases 

an increasingly larger number of eigenmodes, both stationary and travelling appear in 

the eigenspectrum of q, having damping rates approximately equal with that of the least 

damped eigenmode. As a consequence, the numerical solution may initially be attracted 

to a different than the least damped {ß = 0)-eigenmode but its long-time behaviour will 

be determined by the latter disturbance. In both the Re = 500 and the Re = 1000 results 

of Fig. 3 the damping rates u\ of the least and the next more stable mode are presented 

as symbols superimposed upon the curves used to determine a. The results at Re — 400, 

on the other hand, are a qualitatively different manifestation of the same phenomenon of a 

dense eigenvalue spectrum in the neighbourhood of the least stable (ß = 0) -eigenmode 

of q. Instead of the solution being attracted by two distinct linear eigenmodes for long 

integration times, here the progression between a q initially attracted by the third least stable 

member of the eigenspectrum of q to the final state (which is again determined by the least 

stable eigenmode) is gradual, taking place throughout the entire convergence history. The 

result is the barely perceptible deviation from an exponential decay of residuals which may 

be seen in the result for the time dependence of log{V>*} at this Reynolds number, presented 

in Fig. 2. 

Yet another qualitatively different behaviour is observed in the time-signal of q as a 

consequence of a further increase of the Reynolds number. Alongside the least damped 

stationary mode travelling disturbances appear, as seen in the results of Figs. 4a-4c. In all 



three figures a(t) assumes the form of exponentially decaying disturbances. However, while 

at the lowest Reynolds number a clearly identifiable sinusoidal perturbation may be seen, 

having wr « 0.97±0.01, a barely perceptible deviation from a single oscillatory disturbance 

(wr « 0.954 ± 0.012) may be seen at Re = 5000; at Re = 7500 the solution demonstrates 

a behaviour which might be interpreted either as nonlinearity or as superposition of two 

exponentially decaying linear sinusoidal disturbances having frequencies of wr = 0.933 

and 0.945. In order to analyse these observations we pursue two independent paths. First, 

we perform a nonparallel linear instability analysis of the converged steady state at each 

Reynolds number and monitor the least-stable member of the eigenspectrum, which turns 

out to be a stationary linear eigenmode. Second, we perform a discrete Fourier transform 

(DFT) of the DNS signal for q at Re = 2500,5000 and 7500 and compare the results with 

the eigenvalues of the travelling disturbances delivered by the linear instability analysis. 

Table 4 shows that a progressive deviation of the rate of decay of the residuals from the 

damping rate of the least-damped eigenmode occurs as Re increases. This result suggests 

that as the Reynolds number increases nonlinear interaction of the least stable eigenmodes 

may cause a departure of the numerical solution from a behaviour predicted by nonparallel 

linear theory. The role that the least stable members of the full eigenvalue spectrum play 

in the dynamics of the flow may be inferred from the results of Figs. 5a- 5c. In Fig. 5a 

we present the DFT of the DNS signal for V>(0.5,0.5) scaled by the maximum value of the 

spectral density. A single peak at 27r/ « 1, albeit of somewhat wide support, dominates 

over two much smaller peaks at 27r/ = 0 and 27r/ « 2. Shown are also the results 

of (6a-6d) for wr, arbitrarily placed on the vertical axis for readability. An one-to-one 

correspondence between the peaks in the spectrum and the values of u>r for stationary and 

travelling linear eigenmodes is clearly identifiable. Interestingly, the width of the support 

of the peaks is found to be associated with the existence of more than one eigenvalues in 



the partial-derivative eigenvalue problem spectrum, at both wr « 1 and a>r w 2. The origin 

of the existence of only harmonics of the first travelling eigenmode in the full eigenvalue 

spectrum deserves further investigation. It should be noted here that a Krylov subspace 

iteration method has been used for the solution of the partial-derivative eigenvalue problem, 

which results in only a window of the eigenvalue spectrum being captured at any single 

calculation. The number of converged eigenvalues recovered increases as the subspace 

dimension increases. However, the neighbourhood of (wr, Wi) = 0 has been well resolved 

in all results presented here. A higher Krylov subspace dimension has been found to deliver 

additional eigenvalues at higher frequencies. 

While the agreement between the frequencies in the DNS signal and those of the non- 

parallel linear analysis of the converged steady state is evident, the results of Fig. 5a do 

not provide any information on the damping rates w\ of the disturbances whose frequency 

lies at w, « 1 in relation to those at different frequencies. For our argument that the 

residuals in the calculation may be identified as the least stable of the two-dimensional 

[ß = fj)-eigenmodes to be valid, the damping rate of the linear disturbances at wr « 1 

must be lower than that of modes with higher frequencies; this is a point to which we will 

return shortly. Qualitatively analogous results are obtained at Re = 5000, seen in Fig. 5b. 

Besides the slight shift towards lower frequencies, the quantitative difference with the re- 

sults at Re = 2500 is that the strength of the eigenmodes at wr « 2 is substantially larger 

than that of their counterparts at Re = 2500 in relation to the strength of the respective 

modes at wr « 1; this is the origin of the slight deviation from a purely sinusoidal behaviour 

of the signal at this Reynolds number, seen in Fig. 4b. Further, additional eigenmodes ap- 

pear alongside the counterparts of those seen at Re = 2500 at wT = 0 and u>r « 1 and 

new modes appear at uT « 3 and wr « 4. Finally, at Re = 7500, the pattern discovered 

at the lower Reynolds number values qualitatively repeats itself, with the appearance of 



additional modes at the same and new at high-frequencies; furthermore a new mode which 

does not fit in the period-doubling scenario discussed also is present in the linear instability 

analysis results, which the DFT reveals to be too weak to play an important role in the 

dynamics of the flow at this Reynolds number value. 

We return to the question of damping rates of the linear instability modes and present 

in Fig. 6 the full spectrum of eigenvalues in the neighbourhood of u> = 0 at Re = 

2500,5000, and 7500. Results of significance in this figure are the following. First, as 

the Reynolds number increases the flow becomes less stable to two-dimensional linear 

(/3 = 0)-eigenmodes. Second, in all three Reynolds numbers the least stable modes 

are stationary disturbances. Third, perfect symmetry about o/r = 0 may be observed 

in the results, as should be expected from the ability to reformulate (6a-6d) as a real 

eigenvalue problem. Consistent with the DFT results of the signal discussed earlier, 

the eigenmodes at u, K 1 are less stable than their counterparts at higher frequencies. 

Comparing, for example, the Re = 5000 eigenmodes (wr,Wi) = (0.967,-0.0158) and 

(wr, Wi) = (1.921, -0.0319) one finds that, if introduced at the same initial amplitude in 

the flow, the second mode would be reduced by a given number of orders of magnitude in 

amplitude in approximately half as long an integration time as that required for the first 

mode to experience the same reduction of amplitude. 

3.3.   The critical Reynolds number of (ß = 0) —linear disturbances 

The preceding discussion leads to re-examination of the question of a critical Reynolds 

number for linear growth of two-dimensional global instabilities in the square lid-driven 

cavity. Consistent with well-established numerical solutions for the steady-state in this flow 

the nonparallel linear instability analysis results of § 3.2 deliver a least damped stationary 

(ß = 0) -eigenmode which has a damping rate whose magnitude decreases with increasing 

Reynolds number. The dependence of ui\ on Re for this mode has been obtained at several 



Reynolds numbers and is presented by symbols in Fig. 7. Analysis of the results for the 

damping rate of the least-damped eigenmode as function of the Reynolds number delivers 

a curve-fit of the data by using 

Wi = -109.071 Re-ims. (18) 

The curve defined by (18) is also shown in Fig. 7 by a solid line and has been found to 

deliver reasonably accurate predictions of Wi at Re > 1000, where the calculated data may 

be collapsed onto a single curve. The upper bound of the Reynolds-number range in which 

(18) may be used with confidence to predict the rate of decay of residuals and the associated 

time of integration of the equations of motion until a steady-state solution is reached must 

be Re « 104, a value below which a multitude of two-dimensional numerical solutions 

have demonstrated the existence of converged two-dimensional states. In the framework of 

the current nonparallel linear instability analysis this should manifest itself by q losing its 

stability in a linear framework to amplified two-dimensional perturbations having ß = 0. 

However, as has been mentioned, the existence of a converged steady-state solution is 

synonymous with all global eigenmodes of the flow being stable. Another possibility is 

that the nonlinear interaction of two-dimensional global neutrally-stable disturbances as 

the Reynolds number increases may be held responsible for the observed inability to obtain 

a converged steady state solution. However, from (18) it follows that Wi < 0, VEe and 

the flow remains stable to all two-dimensional (ß = 0)—eigenmodes. Two aspects of this 

prediction should be stressed here. First, (18) is a curve-fit, at best valid up to the highest 

Reynolds number used to produce it, Re = 7500. Second, the filling-up of the eigenspec- 

trum and the associated nonlinear interaction of some of the least stable eigenmodes as the 

Reynolds number increases, causes a systematic departure of the numerical solution for q 

from one determined by a single eigenmode of the nonparallel linear instability theory, as 

already shown in the results of Table 4. On the other hand, the trend predicted by (18) is 



correct, namely that the damping rates of two-dimensional global linear instabilities as Re 

increases are exponentially small in magnitude. As such, an increasingly large number of 

global modes may be considered neutrally stable at large Reynolds numbers; it is there- 

fore likely that the second scenario, namely nonlinear interaction of near neutrally stable 

two-dimensional global flow eigenmodes is responsible for the observed loss of ability to 

obtain a steady-state solution of the equations of motion at Re > 104 (f.e. [31]). 

3.4.   The spatial distribution of the least-damped global eigenmode 

A closer look at the spatial distribution of the least-damped of the global linear eigen- 

modes, which we have identified as the residual of the DNS calculation at low and moderate 

Reynolds numbers, is now in order. Before presenting results of the eigenvalue problem at a 

single Reynolds number value, Re = 1000, we remark that the converged two-dimensional 

flow q in the lid-driven cavity has two velocity components ü and v both of which lie on 

the plane fi. Consequently, there is no preferential direction along the z-spatial coordinate. 

Mathematically, this physical fact is expressed by the ability to write (6a-6d) as an eigen- 

value problem with real coefficients which admits either real or complex-conjugate pairs of 

solutions. The former are identified as the stationary and the latter as the travelling modes. 

In the case of flow at Re = 1000 the least damped eigenmode is a stationary disturbance 

whose eigenvalue is a; = (0.0, —0.068). Fig. 8 shows the scaled disturbance eigenvector 

as contour-lines, the labelling of which is to be found in Table 5. 

The most striking feature of the results for ü and v is that these disturbance velocity 

components qualitatively correspond to small-perturbations of their basic flow counterparts 

ü and v, respectively. The predominant motion set up by the disturbance flowfield follows 

that of the basic flow with flow being driven along the positive x—axis by ü in the top 

half of the cavity and along the opposite direction in the lower half. Analogously, v 

divides the cavity in two parts; one in which flow is along the positive and one along the 



negative y-direction; this result may be visualised in Fig. 8. Another interesting result 

clearly visible in both the ü and the v velocity components is the existence of local vortical 

motion in the neighbourhood of all four corners of the cavity. As has been mentioned, 

the three-dimensionality of physical space is respected in the framework of the nonparallel 

linear instability analysis, with the existence of a steady-state solution q being associated 

with a damped eigenmode which may possess a nonzero spanwise disturbance velocity 

component w; that of flow at Re = 1000 is shown in Fig. 8. It should be mentioned 

here that the spatial structure of w of the present two-dimensional {ß = 0) -eigenmode is 

qualitatively reminiscent ofthat of its three-dimensional (ß ^ 0)-counterparts discussed 

by Ding & Kawahara [5] at approximately the same Reynolds number value. Finally, the 

disturbance pressure p also inherits the qualitative characteristics of the basic flow, with 

remarkable analogies existing between the basic flow pressure [2] and the present linear 

instability analysis result. The flowfield pattern set up by combination of the u and v 

disturbance velocity components is visualised in Fig. 9. 

Of the multitude of results on spurious and transient solutions of the two-dimensional 

incompressible continuity and Navier-Stokes equations, we recall here those of Schreiber 

and Keller [20] and E and Liu [30], respectively. The former investigators demonstrated that 

a steady-state formulation of the governing equations may, on occasion, deliver unphysical 

results which persist when using different spatial discretisation schemes but not at different 

resolutions. While speculative, on account of the impossibility of direct comparisons of 

results of steady and unsteady calculations, a plausible argument may be put forward here 

that the combination of the particular initial conditions and resolution used in the steady 

calculations result in the gross features of one or more of the global linear eigenmodes 

being well resolved at that resolution. Since the time-dependence which would ensure 

the exponential decay of the eigenmode at the Reynolds number values studied in [20] is 



absent from the scheme integrating the steady equations of motion, the iteration merely 

serves to converge to a solution which is close to the initial attractor. A higher resolution is 

no guarantee of preservation of the same initial condition, resulting in the irreproducibility 

of the behaviour at the lower resolution and the characterisation of the latter as spurious. 

E and Liu [30], on the other hand, compare different schemes for the spatial discretisation 

used within time-accurate solutions and present results at given times. Some of the results 

which these researchers present at Re = 104 are at a rather early time in terms of that 

necessary for convergence at this Reynolds number value (Fig.4, p. 129, streamlines at 

t = 2). In these results one may interpret the states presented as superposition of several 

global eigenmodes which can be present at an 0(1) amplitude in the solution at this early 

time, upon the well-known steady-flow streamline pattern. 

3.5.   Obtaining the converged steady-state solution from non-converged transient 
data 

The preceding discussion has demonstrated the association of residuals in two-dimensional 

incompressible DNS calculations with the two-dimensional global linear instability modes 

of the converged steady state. In this section we present examples of recovery of steady- 

state solutions from transient DNS data using this information and the algorithm of § 2.5. 

We stress that the applicability of the algorithm is intimately linked with the quality of the 

DNS and the initial conditions used for the simulation, since both determine when, for what 

length of time and to which linear eigenmode the time-accurate solution will be attracted 

in the course of the time-integration. Here we present a discussion of some parameters 

which affect the results returned by the algorithm in a few Reynolds number cases of those 

on which the algorithm was validated. 

Results at Re = 100,400 and 1000 are shown in Table 6; at each Reynolds number 

we have performed three sets of calculations, two direct numerical simulations and one 

solution of the partial-derivative eigenvalue problem.   Both DNS start from the initial 



condition tp = £ = 0 for the flow streamfunction and vorticity, respectively. On the one 

hand, the converged 'exact' steady state q has been calculated by marching the equations 

of motion until such a time i that the residuals were reduced to machine-roundoff level, 

using 64-bit arithmetic and monitoring convergence along the lines discussed in §3.1. On 

the other hand, we have run another DNS but marched the equations of motion until such 

a time i was reached at which a linear regime was identified by the convergence in time 

of wr (when applicable) and a. The time-marching was then interrupted and either (12) 

or (13) was solved for the respective 'estimated' steady-state solution q. Finally, the 

partial-derivative eigenvalue problem (6a-6d) was solved for two-dimensional disturbances 

(ß = 0) developing upon q and the eigenvalue spectrum pertaining to the flow at each 

Reynolds number was recovered. The results were compared both in terms of the magnitude 

of the relative discrepancy of the two DNS-obtained solutions Aq = |(q — q)/q| and by 

monitoring the difference between a in the second set of DNS and u\. Table 6 shows the 

resolutions and time-steps used in several simulations, the time i at which a converged 

steady-state solution ($, () was obtained by DNS and the time t at which the damping 

rate of residuals converged to within a predefined tolerance of relative discrepancy 10-6 

between successive values of a and the results for y> were calculated. The value of a as 

well as the relative discrepancy AV> = |(V>(f) - ^)/V>| between the estimated and the exact 

steady-states is also shown; the level at which the eigenmode being damped is present in 

the transient solution at time i may be inferred from Aij>. 

The most significant result of this table is the ratio iß. The case Re = 100 is typical 

of one in which the least-stable eigenmode determines the transient behaviour of the DNS 

throughout most of the time-integration process. With the results for a converging quite 

quickly, the desired converged steady-state may be obtained at a time between a quarter at 

the coarsest and a fifth at the finest resolution of the time required by the time-marching 



algorithm for the residuals to be eliminated. The result for a is only marginally affected 

by resolution and time-step; the precise times at which a converges are affected by a small 

amount when refining the grid, with the finest resolution results converging earlier. In all 

cases use of the algorithm of § 2.5 results in substantial savings compared with the otherwise 

necessary computing effort. The spatial distribution of the difference Arp, obtained using 

48 collocation points to discretise each spatial direction, is shown in Fig. 10; aside from the 

level of AV> it is interesting to notice that the discrepancy between the two solutions attains 

its maximum values in the centre of the cavity and neither the singularity of the boundary 

conditions nor the corner vortices are manifested in this quantity. The same qualitative 

behaviour was shown by all distributions of A^ at lower resolutions. An estimate of the 

converged solution rj> obtained by application of (12) at £ = 15 may be found in Fig. 11, 

drawn as contours at the levels presented by [27]. No cosmetic post-processing of the 

results has been applied, with values presented at the collocation points used. As it is to 

be expected by the results of Table 6 the agreement between rp and the result of [27] is 

remarkable. 

The case of Re = 400 will be discussed shortly. At Re = 1000, a converges at 

approximately the same fraction of total integration time as in the Re — 100 results. 

However, compared with the Re = 100 case where the discrepancy between estimated 

and converged steady-states is three to four orders of magnitude smaller compared with 

that shown by Aip, here only one order of magnitude difference between the maxima of 

AV> and Aip is shown. Though small, the discrepancy between xj> and $ is much larger 

than roundoff level, implying that elimination of the least stable eigenmode from the time- 

dependent signal for ip at Re — 1000 does not suffice to deliver the desired $. Another 

observation that may be made by comparing the results of the Re = 100 and Re = 1000 

cases is that at approximately the same value of i/i « 0.23, Az/> is higher by about an 



order of magnitude at Re = 1000 compared with that at Re = 100. In searching for 

an explanation of this behaviour, three factors may be recalled. First, convergence of a 

between successive values is a necessary but not sufficient condition for the algorithm of 

§ 2.5 to deliver accurate results; the converged a should be compared with the corresponding 

damping rates u>i in the least-stable part of the eigenspectrum of the converged steady-state 

q. Second, as the Reynolds number increases the damping rates of all global eigenmodes 

decrease, suggesting that increasingly longer integration times are necessary in the case 

of a higher Reynolds number in order for the residuals to subside to the same level as 

in a lower Reynolds number case. Third, the separation of the eigenvalues in the global 

spectrum plays a significant role in attracting the transient solution, as will be discussed with 

reference to the Re = 400 results. A distinction must be made between the early and the 

late stages of the transient behaviour of the DNS solution. In the latter it is the least-damped 

eigenmode which must eventually be damped in order for a steady-state to be obtained. 

During the early stages of the simulation, on the other hand, an arbitrary initial condition 

may need a large number of damped global eigenmodes in order to be reconstructed. It is, 

therefore, conceivable that at the early stages of the simulation a number of eigenmodes 

other than the least-damped one are present in the transient solution. However, as time 

progresses, increasingly more of these additional eigenmodes subside on account of then- 

large damping rates, to the effect that only the least-damped mode remains to determine 

the behaviour of the residual. In other words, as time progresses, equation (14) reduces to 

(8) and the theory of § 2.5 focussing on a single damped eigenmode is applicable. 

This conjecture may easily be put to test by simply permitting the time integration in 

the second DNS to proceed beyond i while monitoring on the one hand a against w\ 

and on the other hand AV> in the process; the results may be found in Table 7. Again 

we discuss the results at Re = 100 and 1000 first.   At both the lower and the higher 



Reynolds number further integration of the equations of motion in time results in all but 

the least-stable eigenmode being eliminated from the signal, as clearly demonstrated by 

the progressive agreement between the damping rate of residuals a and the damping rate 

Wi of the least stable (ß = 0)-global flow eigenmode. Consistent with this result is the 

increasingly improved accuracy by which the algorithm of § 2.5 returns the estimate of the 

converged steady state, as shown by the minimum and maximum values of Aip also cited. 

Interestingly, %j> may be recovered at the same low level of discrepancy in the two Reynolds 

number cases, f.e. O(10~8) at Re = 100, i/i = .25 and Re = 1000, i/i = .35, although 

the agreement of a with Wi in the Re = 100 is about an order of magnitude better than that 

in the Re = 1000 case. 

At Re = 400, as has already been shown in the results of Fig. 2, during the entire 

course of the time integration, the DNS does not lock on any of the eigenmodes of the 

flow. On account of the dense eigenspectrum in the neighbourhood of the least stable 

eigenmode, the integration is first attracted by the third least stable eigenmode from which 

it gradually departs as time progresses, approaching both the first and the second least 

stable eigenmodes. In the meantime continuation of the time-integration results in the 

converged steady state being reached before the linear eigenmodes come into play in a 

manner analogous to that observed at Re = 100 and 1000. While the results at Re = 100 

and 1000 suggest that permitting the time-integration to proceed beyond the highest value 

of i/i = .35 would yield even better agreement between the results for the estimated and 

the true steady-state solution, the analogous discrepancy at Re = 400 decays much slower. 

Rather than weakening the findings at the other two representative Reynolds numbers, 

the Re = 400 result is a strong demonstration that it is the precise details of the least 

stable part of the flow global eigenspectrum which govern the behaviour of the DNS; if the 

least-stable eigenmodes are clearly separated in the spectrum, as the case is at Re = 100 



and Re = 1000, it is likely that a single eigenmode will attract the numerical solution in 

the course of the time integration, otherwise a dynamic behaviour of the DNS which is 

governed at least for part of the integration time by nonparallel linear instability theory 

may not be realised. In other words it is not largeness of Re but the details of the global 

eigenspectrum which determine whether nonparallel linear theory has a role to play in the 

dynamic behaviour demonstrated in the DNS. 

3.6.   Three-dimensionality as a consequence of amplified (ß ^ 0) two-dimensional 
linear eigenmodes 

Finally, we turn our attention to the differences between two- and three-dimensional 

simulations on account of growing global linear instability modes. While the physics 

behind the instability mechanisms is universal, the lid-driven cavity flow example serves 

again as a demonstrator, with the differences between two- and three-dimensional numerical 

simulation results in this flow being well established [8]. Here we call upon the global 

linear instability theory to discuss their straightforward explanation. 

It is possible that while the (ß = 0)—eigenmodes at a certain Reynolds number are 

damped there exist unstable ß ^ 0 global flow eigenmodes. Indeed, Ding and Kawahara 

[5] have shown that at Re = 950 the flow is unstable to modes having ß € \ßi,ßh] with 

ßi = 2ir/Lh « 6.6 and ßh = 2ir/Li » 8.3, while the domain of unstable wavenumbers 

systematically broadens in both directions on theß—axis as the Reynolds number increases. 

There exist two possibilities of introduction of three-dimensionality by means of DNS, 

either by considering spanwise periodicity (pDNS) or by taking an aperiodic spanwise 

domain bounded by solid walls (aDNS). In the case of pDNS the integration domain 

in the spanwise direction is defined through discrete integer multiples of a fundamental 

wavenumber/3o such that Lz = 2TT/(nß0),n = 1,2, • • •, while in aDNS Lz is a continuous 

free parameter. We discuss the two possibilities separately; in both cases we restrict the 



discussion to simulations performed under initial and boundary conditions such that linear 

instability mechanisms alone can drive nonlinearity. 

If a three-dimensional pDNS is performed at Re = 950 and a spanwise length of 

the integration domain Lz is chosen such that ß0 > 8.3, that is Lz < 0.76, neither 

ßo nor any of the harmonics of this global linear eigenmode can be amplified. As a 

consequence one may predict, without performing the three-dimensional simulation, that 

the latter will converge in time to the same steady-state solution to which a two-dimensional 

(d/dz = 0) simulation converges. At the same Reynolds number value, a choice of 

spanwise wavelength Lz £ [Li, Lh] = [0.76,0.95] will result in exponential amplification 

and, eventually, turbulent flow on account of the unstable fundamental wavenumber which 

is implicitly defined by a spanwise wavelength within this range. Finally, if Lz > 0.95 

two distinct situations may be obtained; with the fundamental wavenumber being stable 

(ßo < 6.6), Lz may be taken such that none of its harmonics fit within the domain of 

unstable wavenumbers at this Reynolds number, or an Lz may be chosen such that some 

harmonic may be amplified. While in the first case the two-dimensional steady-state 

solution will be obtained, the result of a three-dimensional simulation in the second case 

will be transition to a turbulent flow state. The case of an aDNS may be perceived as 

a special case of a pDNS, since the homogeneous Dirichlet conditions imposed on the 

disturbance quantities are a subset of those admissible in a periodic simulation. Here there 

exist two possibilities, depending on whether Lz is smaller or larger than Li. In the first 

case two- and three-dimensional simulations will deliver identical converged steady-state 

solutions while in the second, which includes the well-studied case of a cubic cavity, 

transition to turbulence should be expected on account of at least one three-dimensional 

(ß ^ 0) eigenmode having a wavenumber which fits into ß 6 [6.6,8.3] at this Reynolds 

number value. 



At higher Reynolds number values the situation is qualitatively analogous for aDNS, 

with the dichotomy in wavenumbers being determined by the highest neutrally stable 

wavenumber value. For pDNS, on the other hand, the analogous discussion to that at 

Re = 950 applies at Lz < Lt and Lz 6 [Lt,Lh]. There exists a Reynolds number value, 

though, at which ßh > 2ßr, in such a situation, if Lz > Lh there will always be some 

harmonic of ß0 which will correspond to an unstable mode having ß = nß0 € \ßi,ßh] 

which will be liable to linear amplification in the three-dimensional simulation and eventual 

departure of the three- from the two-dimensional numerical simulation results. The lid- 

driven cavity with its large body of numerical results is but one example of demonstration 

of this behaviour. 

4.    CONCLUSIONS 

The questions which gave rise to the present work may be answered within the unifying 

framework of the reasonably novel global linear instability analysis of a two-dimensional 

steady solution of the equations of motion. Aided by the results of a numerically well- 

studied incompressible flow problem we were able to attach physical significance to the 

transient behaviour of two-dimensional time-dependent incompressible direct numerical 

simulation results. What is commonly known as residual in the simulation is either the least 

damped two-dimensional (ß = 0)-linear eigenmode of the converged steady state itself, 

or can be related to a small number of the least damped modes of the full eigenvalue spec- 

trum. As the Reynolds number increases, all global two-dimensional eigenmodes become 

increasingly less damped, until a parameter value is reached beyond which no steady-state 

solution exists. The physical information which is suppressed in two-dimensional simula- 

tions based on the steady formulation of the equations of motion concerns the dynamical 

behaviour of these two-dimensional linear eigenmodes. While unsteadiness should not 

be interpreted as amplification of the global linear (ß = 0)-eigenmodes, on the simple 



grounds of the absence of a converged steady-state upon which the latter would develop, 

the process leading to unsteadiness is directly linked with the diminishing magnitude of 

damping rates of the global linear modes as the flow Reynolds number increases, and the 

associated prevalence of nonlinearity. 

When a steady-state solution exists, the insight gained from the association of the 

transient behaviour in two-dimensional DNS with the results of the nonparallel linear 

instability analysis of the converged steady-state may be used in a threefold manner. First, 

an algorithm may be constructed, to recover the steady-state solution from transient data 

taken well before convergence, thus making further time-integration of the equations of 

motion redundant. The algorithm, whose building elements were presented in§2.5, is based 

on identification of the parameters pertaining to the linear eigenmodes which determine 

the transient behaviour of the solution, namely the damping rate a and the frequency u>r 

of the least stable eigenmodes. Results shown in §3.5 on the example problem studied 

have demonstrated that up to three-quarters of the otherwise necessary computing effort 

may be saved by application of the theory of §2.5. Second, the results of a nonparallel 

linear instability analysis of the converged steady-state can be used as a quality test of the 

obtained solution, if the latter has been obtained using a time-accurate solution approach. 

The rate of decay of the residual which ultimately has to be damped in order for a converged 

steady-state to be obtained should equal the damping rate of the least-stable eigenmode, 

if both numbers are substantially larger than zero in magnitude. Disagreement of these 

two quantities indicates that the obtained steady-state still contains an unsteady component 

which must be eliminated by further time-integration, or by application of the ideas of §2.5. 

Third, the time necessary for the reduction of residuals to machine-roundoff level may also 

be estimated using nonparallel linear instability theory and is inversely proportional to the 

damping rate of the least damped linear eigenmode. Using the value of the damping rate 



obtained by extrapolation of data at lower Reynolds numbers one predicts that in the square 

lid-driven cavity at Re = 104 a steady-state solution, if one exists, may be obtained after 

integrating the unsteady equations of motion for time in excess of t = 4000 as calculated 

from (7) and non-dimensionalised with the lid-velocity and the cavity length. 

Well before the flow tends to lose its stability to two-dimensional linear eigenmodes, 

three-dimensional (ß ^ 0)-disturbances may be amplified. Depending on the size of the 

observation window in the third spatial dimension, this amplification of three-dimensional 

global disturbances can explain the differences between the results of the two- and three- 

dimensional DNS. Again, caution is warranted at this point not to confuse amplification 

of the global, two-dimensional instabilities discussed here with solutions of the classic 

ordinary-differential-equation based eigenvalue problem, which are incorporated in those 

of (6a-6d); both mechanisms may provide amplification, as the laminar separation bubble 

flow example has clearly demonstrated [29]. Conversely, nonparallel linear instability 

theory provides a handle to probe into the physics of the flow in (three-dimensional) 

physical space using two-dimensional DNS results, before resorting to computationally 

intensive three-dimensional spatial DNS, at least as far as the response of the flow to small- 

amplitude excitations is concerned. Solution of the partial-derivative eigenvalue problem 

not only answers the question whether new physics is to be learnt by performing the three- 

dimensional DNS at a given set of parameters but also provides information on the physical 

mechanism which leads flow to deviate from two-dimensionality. 

5.   EPILOGUE 

Based on the findings presented we may extend the discussion, in the form of proposed 

future work, to both one and three nonperiodic spatial directions. Both an one-dimensional 

and a three-dimensional steady-state solution q may be recovered by application of the 

ideas discussed herein for the case of two nonperiodic spatial directions. In the-case of an 



one-dimensional profile q being seeked by time-marching the equations of motion, taking 

two spatial directions as periodic and resolving the third, the associated linear instability 

problem to be solved is based on the classic system of the one-dimensional Orr-Sommerfeld 

and Squire linear instability equations to which (6a-6d) reduce if the dependence of the basic 

flow on one of the two resolved spatial directions, say x, is neglected such that this spatial 

direction may be taken as homogeneous as far as the disturbance field is concerned. The 

linear mode associated with the residuals is the least stable member of the spectrum obtained 

at a = ß = 0, a and ß being the wavenumbers along the periodic spatial directions, x 

and z. It is well appreciated in this case that agreement of the time-accurate simulation 

results and those of the one-dimensional linear instability problem is a minimum simulation 

quality criterion [12, 3]. However, given current hardware capabilities, it is likely that an 

one-dimensional q will be seeked by a direct algorithm, rather than by time-marching the 

unsteady equations of motion. An extension of the algorithm presented for the recovery of 

a two-dimensional q is also possible in the case of flow developing in three nonperiodic 

spatial directions. In this case the existence of a steady-state q is synonymous with stability 

of all eigenmodes of the flow but current hardware technology makes the solution of the 

corresponding three-dimensional partial derivative eigenvalue problem impractical. On the 

other hand the ideas presented in § 2.5 may be used in order to recover a three-dimensional 

steady state once a regime of linear damping of residuals has been identified. The discussion 

presented may also be straightforwardly extended in compressible flow, in the absence of 

discontinuities. While two-dimensional numerical simulations for compressible flow in the 

presence of discontinuities are well advanced, the corresponding linear instability theory 

is only recently slowly emerging [32]. Both nonparallel linear instability theory in three 

nonperiodic spatial directions and that in the presence of discontinuities are worth pursuing 

in future studies. 



REFERENCES 

1. W. R. Briley. A numerical study of laminar separation bubbles using the Navier-Stokes equations. J. Fluid 
Mech., 47:713-736, 1971. 

2. O. R. Burggraf. Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech., 
24:113-151, 1966. 

3. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral methods in fluid dynamics. Springer, 
1987. 

4. D. Barkley, G. Gomes, and R. D. Henderson. Three-dimensional instability in flow over a backward facing 
step. J. Fluid. Mech, (submitted), 1999. 

5. Y. Ding and M. Kawahara. Linear stability of incompressible flow using a mixed finite element method. J. 
Comput. Phys., 139:243-273, 1998. 

6. P. G. Drazin and W. H. Reid. Hydrodynamic Stability. Cambridge University Press, 1981. 

7. E. Leriche, S. Gavrilakis, and M. O. Deville. Direct numerical simulation of the lid-driven cavity flow 
with Chebyshev polynomials. In K. D. Papailiou, editor, Fourth European Computational Fluid Dynamics 
Conference ECCOMAS'98, pages 220-225, Chichester, N. York, 1998. J. Wiley and Sons. 

8. H. C. Ku, R. S. Hirsch, and T. D. Taylor. A pseudospectral method for solution of the three-dimensional 
incompressible Navier-Stokes equations. J. Comput. Phys., 70:549-462, 1987. 

9. J. Kim and P. Moin. Application of a fractional-step method to incompressible Navier-Stokes equations. J. 
Comput. Phys., 59:308-323, 1985. 

10. J. Shen. Hopf bifurcation of the unsteady regularized driven cavity flow. J. Comput. Phys., 95:228-245, 1991. 

11. J. W. Goodrich, K. Gustafson, and K. Halasi. Hopf bifurcation in the driven cavity. J. Comput. Phys., 
90:219-261, 1990. 

12. L. Kleiser and U. Schumann. Treatment of incompressibility and boundary conditions in 3-d numerical 
simulations of plane channel flows. In E. H. Hirschel, editor, Proceedings, Third GAMM-Conference on 
numerical methods in fluid dynamics, pages 165-173, Braunschweig, 1980. 

13. L. L. Pauley, P. Moin, and W. C. Reynolds. The structure of two-dimensional separation. /. Fluid Mech., 
220:397-411,1990. 

14. M. Abramowitz and I. Stegun. Handbook of mathematical functions. Dover, 1970. 

15. M. M. Rai and P. Moin. Direct simulations of turbulent flow using finite-difference schemes. J. Comp. Phys., 
96:15-33,1991. 

16. N. Y. Lee, W. W. Schultz, and J. P. Boyd. Stability of fluid in a rectangular enclosure by spectral method. Int. 
J. Heat Mass Transfer, 32:513-520, 1996. 

17. P. R. Spalart, R. D. Moser, and M. M. Rogers. Spectral methods for the Navier-Stokes equations with one 
infinite and two periodic directions. J. Comput. Phys., 96:297-324, 1991. 

18. R. T. Pierrehumbert. A universal shortwave instability of two-dimensional eddies in an inviscid fluid. Phys. 
Rev. Let., 57:2157-2159, 1986. 

19. R. Schreiber and H. B. Keller. Driven cavity flows by efficient numerical techniques. J. Comput. Phys., 
49:310-433, 1983. 

20. R. Schreiber and H. B. Keller. Spurious solutions in driven-cavity calculations. J. Comput. P/rys., 49:165-172, 
1983. 

21. N. Ramanan and G M. Homsy. Linear stability of lid-driven cavity flow. Phys. Fluids, 6(8):2690-2701, 1994. 

22. P. R. Spalart. Direct simulation of a turbulent boundary layer up to #9=1410. J. Fluid Mech., 187:61 - 98, 
1988. 

23. V. Theofilis. Linear instability in two spatial dimensions. In K. D. Papailiou, editor, Fourth European 
Computational Fluid Dynamics Conference ECCOMAS'98, pages 547-552, Chichester, N. York, 1998. J. 
Wiley and Sons. 

24. V. Theofilis. On linear and nonlinear instability of the incompressible swept attachment-line boundary layer. 
J. Fluid Mech., 355:193-227, 1998. 

25. W. Tollmien. Über die Entstehung der Turbulenz. Nach. Ges. Wiss. Göttingen, pages 21-44, 1929. 

26. U. Ehrenstein and R. Peyret. A Chebyshev collocation method for the Navier-Stokes equations with application 
to double-diffusive convection. Int. J. Num. Methods Fluids, 9A21-452, 1989. 



27. U. Ghia, K. N. Ghia, and C. T. Shin. High-Re solutions for incompressible flow using the Navier-Stokes 
equations and a multigrid method. J. Comput. Phys., 48:387-411, 1982. 

28. U. Rist and U. Maucher. Direct numerical simulation of 2-d and 3-d instability waves in a laminar separation 
bubble. In B. Cantwell, editor, AGARD-CP-551 Application of Direct and Large Eddy Simulation to Transition 
and Turbulence, pages 34-1 - 34-7, 1994. 

29. V. Theofilis, S. Hein, and U. Ch. Dallmann. On the origins of unsteadiness and three-dimensionality in a 
laminar separation bubble, part i: Linear considerations. Phil. Trans. Roy. Soc. (London) A, (to appear), 1999. 

30. W. E and J.-G. Liu. Essentially compact schemes for unsteady viscous incompressible flows. /. Comput. 
Phys., 126:122-138, 1996. 

31. W. E and J.-G. Liu. Vorticity boundary condition and related issues for finite-difference schemes. J. Comput. 
Phys., 124:368-382, 1996. 

32. X. Zhong. High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer 
transition. /. Comput. Phys., 144:662-709, 1998. 



List of Figures: 

1 Convergence history of stream function rf>(0.5,0.5) against time (left) 

and slope of this curve (right). 
Lower to upper curves, Re = 100, 200 and 300, respectively. 55 

2 Convergence history of V'CO.ö, 0.5) against time at Re = 400 (left) 

and its slope (right). Superimposed and denoted by symbols are 

the eigenvalues of the four least stable global flow eigenmodes. 54 

3 Convergence history of ^(0.5,0.5) against time at Re = 500 (upper left) 

and its slope (upper right); lower left and right, respectively, 

the corresponding results at Re = 1000. 
In both cases superimposed and denoted by symbols are the eigenvalues 

of the two least stable stationary modes. 55 

4 a) The dependence of the function d(ln ip^/dt on time t, 
showing the exponential decay of a single travelling mode (o)r « 0.97 ± 0.01) 

superimposed upon the least damped exponentially decaying stationary disturbance at Äe = 2500. 56 

b) Re = 5000 57 
c) Re = 7500 58 

5 a) The correspondence of the frequencies of the damped linear (ß = 0) 
two-dimensional eigenmodes of the converged steady-states at different Reynolds numbers 
and those obtained from discrete Fourier transforms of the DNS signals. Re = 2500. 59 

b) Re = 5000 60 
c) Re = 7500 61 

6 The filling up of the eigenvalue spectrum as Reynolds number increases; 
Re = 2500 (diamond), 5000 (square), and 7500 (triangle). 62 

7 The dependence of the damping rate wt of the least damped two-dimensional eigenmode 
of the converged steady-state at a Reynolds number on Re as predicted by the model (18) 
denoted by the solid line, and as calculated by numerical solution of the eigenvalue problem 

(6a-6d) denoted by the symbols. 63 

8 Spatial distribution of the disturbance eigenvector of the least damped global linear eigenmode 

at Re = 1000: Disturbance velocity component v., v,w,p. 64- 67 

9 Flowfield set up by combination of it and v. 68 

10 The spatial distribution of the difference A^(a;, y) = ifi — ■$ 
at Re = 100 using Nx = Ny = 48 Jacobi collocation points. 69 

11 An estimate of the converged solution ■ip at Re — 100 obtained by evaluating (12) 
at t = 15 and using Nx — Ny = 48 Jacobi collocation points. 

Iso-contours are drawn at the levels shown by Ghia et al. [27] 70 



TABLE la 

Location and value of the maxima of the primary and the lower-left (LL), lower-right 
(LR) and upper-left (UL) secondary vortices in the steady state solution 

for ^ and f at Re = 400,1000, 3200 and 4000; comparisons 

with Ghia et al. [27] and Schreiber and Keller [19]. 

Ghia era/. [27] 

Re = 400 

Schreiber and Keller [19] present results 

Primary 

LL 

LR 

* -0.1139 -0.1140 -0.1139 

c 2.29469 2.281 2.29584 

(x,y) (0.5547,0.6055) (0.5571,0.6071) (0.5535,0.6054) 

* 1.42 X 10"5 1.45 X 10-6 1.40 x 10-6 

< -0.0570 -0.0471 -0.05685 

(*.!/) (0.0508,0.0469) (0.0500,0.0429) (0.0510,0.0466) 

* 6.42 X 10~4 6.44 X 10-4 6.41 x 10-4 

< -0.4335 -0.394 -0.44802 

(*.!/) (0.8906,0.1250) (0.8857,0.1143) (0.8852,0.1217) 

Ghia et al. [27] 

Re =1000 

Schreiber and Keller [19] present results 

Primary 

LL 

LR 

C 
(x,y) 

C 
(x,y) 

* 
C 

(s,y) 

-0.117929 
2.04968 

(0.5313,0.5625) 

2.31 X 10"4 

-0.36175 
(0.0859,0.0781) 

1.75 X 10_s 

-1.15465 
(0.8594,0.1094) 

-0.11603 
2.02600 

(0.52857,0.56429) 

2.17 X 10~3 

-0.302 
(0.08571,0.07143) 

1.70 X 10~3 

-0.999 
(0.86429,0.10714) 

-0.118902 
2.068251 

(0.529654,0.565018) 

2.354097 X 10-4 

-0.337187 
(0.081549,0.077839) 

1.744028 X 10-3 

-1.097921 
(0.867381,0.114469) 

Re = 3200 

Primary UL LL LR 

[27]            V -0.12038 
£ 1.98860 

(x,y) (0.5165,0.5469) 

present         V -0.12181 
C 1.961154 

(x,y) (0.51722,0.54089) 

7.27682 X 10-4 

-1.71161 
(0.0547, 0.8984) 

7.11201 X 10-4 

-1.65335 
(0.0524,0.8981) 

9.7823 X 10-4 

-1.06301 
(0.0859,0.1094) 

1.12331 X 10-3 

-1.16397 
(0.08106,0.12052) 

3.14 X 10-3 

-2.27365 
(0.81255,0.0859) 

2.82648 X 10-3 

-2.24381 
(0.82281,0.084648) 

Re = 4000 

Primary UL LL LR 

[19] V -0.11237 
C 1.805 

(x,j/) (0.51875,0.53750) 

present ip -0.12203 
< 1.94949 

(x,y) (0.51597,0.53846) 

1.073 x 10"3 

-1.91234 
(0.06098,0.90387) 

1.12 x 10~3 

-1.067 
(0.08125,0.11875) 

1.24736 X 10-3 

-1.27899 
(0.08055,0.12482) 

2.80 X 10-3 

-2.145 
(0.81875,0.07500) 

2.95426 X 10-3 

-2.42032 
(0.81640,0.07983) 



TABLE lb 
Comparison of the interpolated values of our solutions on the maxima presented 

by Ghia et ah    [27] and Schreiber & Keller [19].   An asterisk denotes 
Richardson-extrapolated data in the latter work. 

Re- = 400 

Primary 

C i> 
UL 

C 105V> 
LL 

C 
LR 

104V> C 

[27] -0.113909 2.29469 1.41951 -0.05697 6.42352 -0.4335 
present -0.113989 2.29463 1.47210 -0.05711 6.42406 -0.4329 

[19] -0.11399* 2.2898* 1.45 -0.04710 6.440 -0.3940 
present -0.113982 2.29184 1.40 -0.04766 6.373 -0.4030 

Re = 1000 

Primary 

* C * 
UL 

c 104V> 

LL 

C 
LR 

io3v> C 

[27] -0.117929 2.04968 2.31129 -0.36175 1.75102 -1.1547 
present -0.118902 2.06839 2.37806 -0.36575 1.77911 -1.1486 

[19] -0.11894* 2.0677* 2.1700 -0.302000 1.700 -0.9990 
present -0.118905 2.068234 2.3151 -0.312162 1.763 -1.0481 

Re = 3200 

Primary 

C 104ip 
UL 

C io3v 
LL 

C 
LR 

io3v C 

[27] -0.120377 1.9886 7.27 _ 1.71161 0.98 -1.06301 3.14 -2.27365 
present -0.121777 1.9612 7.08 

~ 
1.73137 1.09 -1.00607 2.77 -2.25511 

Re = 4000 

Primary 

C ■>!> 

UL 
C io3y> 

LL 
C 

LR 
io3v> C 

[19] 
present 

-0.12202* 
-0.122026 

1.9498* 
1.94960 

1.1200 
1.2411 

-1.0670 
-1.1427 

2.8000  -2.14500 
2.9228  -2.31944 



TABLE 2 
Comparison of the least stable eigenmode at Re   =  200 against the results of 

Ramanan and Homsy [21] (RH) and the graphically (digitally) reproduced 
growth rate result of Ding and Kawahara [5] (DK). 

RH DK present results 
p U), Uli <"i u, «)i 

1 ±0.00 -0.34 -0.3183 ±0.0000 -0.3297 
2 ±0.00 -0.23 -0.2248 ±0.0000 -0.2267 
3 ±0.11 -0.29 -0.2924 ±0.1073 -0.2954 
4 ±0.28 -0.30 -0.2969 ±0.2810 -0.2956 
5 ±0.43 -0.34 -0.3431 ±0.4260 -0.3404 
6 ±0.58 -0.39 -0.3893 ±0.5821 -0.3844 
7 ±0.67 -0.41 -0.4073 ±0.6733 -0.4013 
8 ±0.72 -0.45 -0.4637 ±0.7232 -0.4587 
9 ±0.76 -0.54 -0.5504 ±0.7622 -0.5473 



TABLE3 
Numerical results for the rate of decay of residuals <r as a function of resolution 

at different low Reynolds numbers.   Also shown the result of numerical 
solution of (6a-6d) for the imaginary part of the eigenvalue u>i, 

using the respective converged steady-state as basic flow. 

Re 

100 200 300 

Resolution <T <T a 

16 x 16 -0.5404 -0.3248 -0.2865 
24 X 24 -0.5407 -0.3319 -0.2843 
32 X 32 -0.5409 -0.3318 -0.2842 
40 X 40 -0.5409 -0.3318 -0.2842 

-0.5410     -0.3319     -0.2845 



TABLE 4 

Numerical results for the damping rate w, of the least stable (/3 = 0)— eigenmode 
at Re = 2500, 5000 and 7500 and its discrepancy in percentage terms 

from the rate of decay of residuals er. 

Re w; H=?I xioo 

2500     -0.0253 1.2 

5000     -0.0112 8.9 

7500     -0.0093 17.8 



TABLE 5 
Contour levels for the spatial structure of the normalised eigenfunctions pertaining 

to the least stable global (ß = 0—)eigenmode at Re = 1000, whose 
eigenvalue is w = (0.0, —0.068); x(y) =xx 10v. 

Ü V ii P 
level symbol level symbol level symbol level symbol 

+/-»(-l) A/a +/-9(-l) A/a .9 a .90 a 
+/-6(-l) B/b +/-6(-l) B/b .7 b .80 b 
+/-S(-1) C/c +/-3(-l) C/c .5 c .70 c 
+/-6(-2) D/d +/-6(-2) D/d .3 d .60 d 
+/-2(-2) E/e +/-2(-2) E/e +/ -.1 e/g .45 e 
+/-l{-3) F/f +/-1(-S) F/f 0 

-.2 
f 
h 

.30 

.15 
0 

-.15 
-.20 

f 
g 
h 
i 
j 



TABLE 6 

Recovery of $ from transient data at Re   =   100,400 and 1000 as function 
of resolution and time-step used in the DNS. x(y) = x x 10u. 

Re = 100 

Resolution 16 x 16 24x24 32 X 32 
At 0.01 0.01 0.005 
t 50.43 50.42 49.005 
t 12.71 12.79 11.07 

—a 0.540246 0.540214 0.540876 
max(Ayi) 5.3(-8) 8.8(-7) 4.6(-6) 
min(Ay>) 3.6(-9) 7.9(-8) 5.1(-7) 
max(Ai0) 3.4(-4) 3.5(-4) 1.0(-3) 
min(A^i) 1.5(-5) 1.2(-3) 1.6(-2) 

Re = 400 

Resolution 16 x 16 24x24 32 x 32 
At 0.01 0.01 0.01 
t 117.82 110.91 110.27 
t 26.43 23.43 23.43 

— <T 0.267091 0.258176 0.258280 
maxfAV1) 5.2(-5) 3.6(-5) 1.3(-5) 
min(Ayi) 7.0(-6) 1.9(-5) 7.7(-6) 
max(A'0) 2.8(-3) 1.2(-2) 9.5(-3) 
min(AVi) 8.0(-4) 2.1(-3) 2.4(-3) 

Re = 1000 

Resolution 24 X 24 32 X 32 40 x40 
At 0.01 0.01 0.01 
t 325.93 323.61 324.33 
t 77.82 77.53 77.81 

—<r 0.065808 0.065657 0.065336 
max(A^) 2.9(-6) 9.5(-5) 3.1(-5) 
min(A^) 4.9(-7) 3.2(-6) 3.3(-6) 
max(Ayi) 3.7(-4) 3.6(-4) 2.5(-4) 
min(Ayi) 3.7(-4) 5.1(-4) 3.3(-4) 



TABLE 7 

Recovery of q at several Reynolds numbers from transient data at times beyond that 
at which a> converges. The discrepancy between <r and u>-, of the least stable 

eigenmode is also presented. Re = 100 and 400 runs on a 323 

grid; Äe = 1000 run on a 402 grid. x(y) = x x 10v. 

\ x 100     max(AV>)     min(AV) ^rp1 x 100 

Re = 100 

22.59        4.6(-6)        5.1(-7) 0.023 
25.02 4.0(-8) 1.9(-8) 0.018 
30.90 2.5(-9) 1.2(-9) 0.011 
35.12        1.8(-10)      1.0(-10) 0.009 

Re = 400 

21.25        1.3(-5)        7.7(-6) 19.10/11.71/6.85 
25.03 8.4(-6) 3.5(-6) 18.88/11.49/7.07 
30.05 2.6(-6) 9.5(-7) 18.26/10.88/7.67 
35.61        1.3(-6)        5.6(-7) 18.04/10.66/7.90 

Re = 1000 

23.99        3.1(-5)        3.3(-6) 3.97 
25.02       1.3(-5)        1.5(-6) 3.35 
30.23       2.1(-6)        1.2(-7) 0.65 
35.02        1.5(-8)        5.8(-9) 0.24 



o 

FIG. 1.   Convergence history of stream function ip(0.5,0.5) against time (left) and slope of this curve (right). 
Lower to upper curves, Re = 100,200 and 300, respectively. 
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FIG. 2.        Convergence history of ^>(0.5,0.5) against time at Re = 400 (left) and its slope (right). 
Superimposed and denoted by symbols are the eigenvalues of the four least stable global flow eigenmodes. 



o 
"-0.5 

150 

O 

u.o 

0 

lT% 

0.5 ■ 

-1 ■ 

300 0 100 200 300 
t 

FIG. 3. Convergence history of ip(0.5, 0.5) against time at Re = 500 (upper left) and its slope (upper 
right); lower left and right, respectively, the corresponding results at Re = 1000. In both cases superimposed 
and denoted by symbols are the eigenvalues of the two least stable stationary modes. 
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FIG. 4a. The dependence of the function d(ln ip^/dt on time t, showing the exponential decay of a single 
travelling mode (ajr « 0.97 ± 0.01) superimposed upon the least damped exponentially decaying stationary 
disturbance at Re = 2500. 



0.01 

-0.01 

-0.02 

-0.03 

-0.04 

-i 1 1 r- -i r~ 

Re=5000 

300       320       340      360      380      400      420      440      460      480      500 
t 

FIG. 4b.  Re = 5000 
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FIG. 4c.  Re = 7500 
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FIG. 5a. The correspondence of the frequencies of the damped linear (ß = 0) two-dimensional eigenmodes 
of the converged steady-states at different Reynolds numbers and those obtained from discrete Fourier transforms 
of the DNS signals. Re = 2500. 
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FIG. 5b.   Re = 5000 
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FIG. 5c.  Re = 7500 
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FIG. 6.     The filling up of the eigenvalue spectrum as Reynolds number increases; Re = 2500 (diamond), 
5000 (square), and 7500 (triangle). 
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FIG. 7. The dependence of the damping rate Wi of the least damped two-dimensional eigenmode of the 
converged steady-state at a Reynolds number on Re as predicted by the model (18) denoted by the solid line, and 
as calculated by numerical solution of the eigenvalue problem (6a-6d) denoted by the symbols. 



>-0.5 

FIG. 8.     Spatial distribution of the disturbance eigenvector of the least damped global linear eigenmode at 
Re = 1000: Disturbance velocity component ü. 
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FIG. 8—Continued 

Disturbance velocity component v. 
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FIG. 8—Continued 

Disturbance velocity component w. 
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FIG. 8—Continued 

Disturbance pressure p. 
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FIG. 9.  Flowfield set up by combination of ü and v. 
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FIG. 10.    The spatial distribution of the difference A'0(x, y) = ■iji - ip at Re = 100 using Nx = Ny = 48 
Jacobi collocation points. 
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FIG. 11.     An estimate of the converged solution ip at Re = 100 obtained by evaluating (12) at t = 15 and 
using Nx = Ny = 48 Jacobi collocation points. Iso-contours are drawn at the levels shown by Ghia el at [27] 


